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Interpolation of a doubly infinite sequence of data by spline functions is studied.
When the interpolation points and the knots of the interpolating splines are charac-
terized by a periodic behavior, the interpolating problem is called Cardinal Inter-
polation. This work extends known results on Cardinal Interpolation to the
“almost cardinal™ case. where the interpolation is cardinal except for a finite num-
ber of interpolation points and knots. [n passing from the cardinal to the “almost
cardinal” case, the “invariance under translation™ property of the interpolating
spaces is lost. Thus classical arguments used in solving the cardinal case do not
apply. Instead we use the intimate connection between the interpolating “almost
cardinal splines” and Oscillatory Matrices. The main conclusion of this work is that
a wide range of Almost Cardinal Interpolation Problems have the same type of
solution as the corresponding Cardinal Interpolation Problem. ¢ 1990 Academic

Press. Inc

l. INTRODUCTION

This paper deals with a certain generalization of known results on
Cardinal Spline Interpolation. The characteristic feature of Cardinal Spline
Interpolation Problems is the periodicity of the knot sequence which
defines the spline functions and the placement of the interpolation points.
The interpolation problem which we use as a starting point is the
following:

Let A=1{&, &, <o)y such that 0=¢ <& < --- <=1 and ¢ a
positive integer, be given. We extend periodically the partition 2 of the
unit interval to the infinite line R, and denote the resulting partition by
/= {le} e, The partition A and a natural number r define spaces of
spline functions as follows: Given n = 2r — 1,

Sy = U iy el fx)eC” "(R)],
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134 ARAD AND DYN

where [, is the space of algebraic polynomials of degree at most .
The Cardinal Interpolation Problem on S, s the following class of
problems:

Given r bounded sequences { /7', .. /=0.1,...r— 1, and a sequence
%= (% .. - satisfying either

(a) 2,=0 for all & or

(by O<a,<t,—1t, (and o, ,.=x, for all k.

find a unique bounded function S, , . that satisfies /'"(1, + 2,) = ! for
all ke Z and /=0, 1, .., r— 1. Some special cases are:

(I} ¢=1, r=1, «,=0. This is the classical Lagrange Cardinal
Interpolation Problem first considered by Schoenberg in [5]. In this case

Svfz‘l‘/;" = Sn: {f(\){f[/\kﬂk 1] Enwf(-\')e C‘” ](R)}

and the interpolation problem amounts to finding a unique bounded func-
tion f(x)e .S, satisfying f(k)=f, for all ke Z, for any bounded sequence

(I1)y ¢=1, %, =0. In this case we relax the continuity conditions on
functions 1 §,, and in turn interpolate bounded Hermite data at the
integers by bounded functions in S

(ITIY  r=1, 2, =0. This case was first considered by Micchelli in [4].
(IV) ¢&=1, 2, =1 This is Cardinal Lagrange Interpolation at the
mid-points between the integers.

So much for Cardinal Spline Interpolation.

Generalizing the known results on the above Cardinal Interpolation
Problem, we solve here a closely related “Almost Cardinal™ Interpolation
Problem (ACIP). Let {s,},. . be a strictly increasing sequence of real
numbers satisfying the following condition: There exist indices </ and a
partition 7 (as in the cardinal spline spaces) such that {7, |, ., agrees with
ey & and {1, } o, agrees with ¢, /A for arbitrary positive constants ¢; and
¢». The sequence d= {r,},. . and the natural number r define “almost
cardinal spline” spaces for n > 2r— 1:

Sn.no = {f(‘)'/[ ootk ) € I]rﬂ f(\) € (w r(R):

Setting o = {x, ), - as one of the two types,

(a) a,=0forallkeZ,
(b) O<oy<ty,—1t, forall ke and %, ==, , for A=/l and k </



ALMOST CARDINAL SPLINE INTERPOLATION 135

{where ¢ is defined by the partition &), we define an Almost Cardinal
Interpolation Problem on S, , , as: Given r bounded sequences | "}, . ..
j=0.1,...r—1, find a unique bounded function in S,,, satisfying
F% 4 )=f forall ke Z and j=0,1. .. r—1.

In [ 1] a wide range of problems of this type are studied, but only for n
odd, and the interpolation is done at the knot sequence.

A main feature of the Cardinal Spaces S, , . is their invariance under
translation, which enables one to easily define the null-space associated
with the interpolation problem in terms of eigensplines [4, 5, 6 ]-—functions
that have specific growth qualities as |x| — oc. Invariance under translation
is not a feature of functions in spaces of almost cardinal splines, thus the
characterization of the null-space associated with the ACIP is a bit more
tricky. A main step in our analysis is to show that although eigensplines {in
the cardinal sense) do not exist in the null-space of S, , ,, functions having
similar qualities can be constructed. The existence of these functions leads us
to the conclusion that the null-space of S, , ; has the same basic structure
as that of S, in the cardinal case, and consequently the solution of an
ACIP is of the same nature as that of the corresponding cardinal problem.
An outline of the structure of this paper is given below.

In Section 2 wc start with a characterization of the null-space of S, , ,
restricted to any interval [7,,r, ,] using oscillatory matrices, and state
results from the theory of oscillatory matrices nceded to construct a
convenient basis of the null-space.

In Section 3 we fully characterize the null-space, and give conditions for
the uniqueness of a solution to the ACIP. Our main conclusion is that
uniqueness is completely determined by the structure of the knot sequence
6 and of the interpolating points {7, +2,}, . in the “cardinal range.”
namely, outside the finite segment [7,.¢,].

Section 4 is devoted to the existence of a solution in those cases where
uniqueness 1s guaranteed. This 1s done by showing the existence of
Lagrange functions %, ;(x) [5] and by analyzing the uniform convergence
of series of these functions.

2. PRELIMINARY RESULTS

Following Schoenberg [5], we define the null-space of S relative to

the interpolating points {7, + .}, as

oo

Ed
SN. r.o

= X)ES, o [t +2,)=0,0<j<r~ 1 keZ).

x

The following observations about S7, ; come in handy:

HoEO

640 62 1-10
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(2.1) S}, . 1s a finite dimensional subspace of S, , , of dimension .
where
{n—{—l —2r, o, =0 forall heZ
H=

n+1-—-r, a2, #0 forall ke 7.

{2.2) An element f(x)e S is umquely determined by its values on
any interval [7,,17,, ]

Due to (2.2). in order to construct a basis for S) , it is sufficient to
construct a basis for all polynomials p(x) of degree at most # satisfying for
some A

P =p N ) =0, Jj=0.1,..r—1 il %, =0
P+ )=0.  j=0.1...r—1 otherwise
and then to extend these functions outside [7,. 7., ] to eclements of S}, .
In the sequel we shall make extensive use of the following notation for
f(x) with [ derivatives at xo: [ f](xy) = (f"(xg) e [ (x o))

THEOREM 2.1 [4.6]. (a) The space of all polynomials p(x) of degree at
most n that satisfy the conditions: p'(0)=p"(1)=0 for 0< j<r—1is of

dimension n+ 1 —2r, and is spanned by polynomials {p,,}" " | ¥ sutisfying
[p, 30 "(W=A0p, 1 (0= [p, 10 (0L (2.3)

where (— 1) A, is an oscillatory matrix of order n+1—2r.
(b)  The space of all polyvnomials p(x) of degree at most n that satisfv
the conditions p'"(x)=0 for O<x<l and 0<j<r—1 is of dimension

n+t—rand is spanned by polvnomials | p?, 1" " " satisfring the equations

[p/, 05 "(Ly=A47"Lp;, 15 (0)=47"[p; 15 "(0) (2.4)
where (— 1) A is oscillatory of the order n+ 1 —r.

Remarks. (1) A rectangular matrix 1s called totally positive (non-
negative) if all its minors of any order are positive (non-negative). A square
matrix S is called oscillatory if it is totally non-negative. and there exists
a positive integer k such that S* is totally positive.

(2) It is clear from (2.3) and (2.4) that the vectors { p,, 17 "(0) are
cigenvectors of A, associated with the cigenvalues +,, likewise for
[»;, 74 "(0). the numbers 2" and the matrix A4\

(3) Theorem 2.1 was stated for the interval [0, 1]. It is clear that this
theorem holds, with obvious changes, for any interval [7,,7,,,] In
particular, the matrix A, for [7,.1,.,] s similar to that for [0, 1].

It follows from Theorem 2.1, observation (2.2), and S}, < C* 7 that
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COROLLARY 2.1. There exists a basis of S}, .. {pAx)}}_,, with the
PrOperty

Ly 10 k) :/11; Lp, 17 "0, keZ, j=12,..u
where

{0, a, #0, keZ
0 r, a,=0, keZ

and 4, s, ... 4, are the eigenvalues of a matrix A with the property

LA) k+1)=A[F]" "(k), kelZ, f[e§’

morot
A can be factored into A---- A, where (—1)" A, is an oscillatory matrix as
in Theorem 2.1 with the property

A1 (k+8)=407]17 "(k+<, 1), kel [e§]

noro T

The following properties of oscillatory matrices due to Gantmakher and
Krien {27 are of great importance to us in the forthcoming analysis.

THEOREM 2.2 [2]. The eigenvalues of an oscillatory matrix are all real,
positive, and simple.

THEOREM 2.3 [2]. The product of uw— 1 oscillatory matrices of order u
is totally positive. Furthermore the product of an oscillatory matrix and a
totally positive matrix is totally positive.

Let Ye€R". We denote by S (X) the number of sign changes in the
sequence (X, X5, .., X,) where we ignore all zero entries. The maximum
number of sign changes in (x,. X,, .., X,,) when zero entries are given either
a“+7 ora"—"signis denoted by S*(x). It is clear that S ()< S (x).
and a necessary condition for equality is that x, # 0 and x, # 0. With these
notations we have:

THEOREM 2.4 [3). If A is a totally positive matrix of order n, then for
cvery 0#Xxe R" we have ST(AX)< S ().

Tueorem 2.5 [27. If A is an oscillatory matrix of order g with cigen-
values 7, > 7,> --- > 4,>0 and associated eigenvectors {x'}'_ . then for
every non-trivial vector X=3%%  x.X' we have

p—1<S (X)<S (x)gy— 1.

In particular, the rth eigenvector has exactly r—1 sign changes.
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Since we are mainly interested in the sign changes of the eigenvectors of
the matrices we are dealing with, we make the following definition.

DEFINITION 2.6. (a) An oscillation matrix 4 is a matrix such that
either 4 or — A is oscillatory.
(b} A regulating matrix B is a matrix such that either B or — B is
totally positive.

This is a special case of a strictly sign-consistent (SSC) matrix as defined
by Karlin [3].

Theorems 2.2-2.5 are also valid for oscillation and regulating matrices
provided we order the eigenvalues of the matrix in decreasing absolute
value.

3. THE NULL-SPACE §7

2.

As seen in observation (2.2), in order to construct a basis for S, ; we

construct a basis for S, ; restricted to an interval [,, 1, ,,]. Applying
Theorem 2.1 to the intervals [¢, ,,¢,] and [7,.17,,,] and cxtending the
corresponding basis functions to elements to §7 | we arrive at two bascs
of 8% .. {pix)}i_, and [g{x)}t |, where u=dimS; . In view of
Corollary 2.1, Theorem 2.2, and the fact that the knot sequence and
interpolation points are “cardinal” for x<r, and x=>r,, the functions
{p(x)}7_, and {g,(x)}7 | have the following properties:
There exist |4, > --- >|/,| and positive constants ¢, and ¢, such that

Py =004,1"") as X - — (3.1

g, (x)=0([4,]") as v o o, (3.2)

Note that 4, /,, ..., 4, are the same for the two basis in view of remark (3)
and the structure of the space S, for x<r, and x=,. In the forthcom-

ing analysis each basis is used in one ray of R: namely. every fe€ S | is
represented in two forms:

o
fx)= Z a; p,(x) for x<y (3.3)

Joed

it
Sflxy= Z hogAx) for x>1,. (3.4)
gt

The next important lemma relates the representations {3.3) and (3.4) of
certain elements of S~

nor.o”
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LemMA 3.1, Let OF f(x)eS?, . If in terms of the basis | p,(x){_,,
f(x) has a representation

i

Sly= 3 u,p,(x), 1<,

joo 1

then in terms of the basis {q,(x)}"_ . f(x) has a representation

S0= Y bg,ix,

il

with b, #0 for some 1 < j, <1

It

Proof. By the construction of the basis | p,(x)j/_ . [p,]7 "(1,) is an
eigenvector of an oscillation matrix A4 d%socmted with its jth elg«’anlue n
absolute value (here 4 and s depend on #, r, the knot sequence, and the
interpolation points {7, + o, ). Now let

!

fxy=Y ap(x) <

j=1

then by Theorem 2.5
(LA () LAY T <se- L (3.3)

while by Theorem 2.1 we have [ f 1" "(1,, )=4,[/]1" ' (1;). where A, is
the oscillation matrix of the theorem. Thus for every m > l we have

A+ m 1 N
(/1" "(r/,,,,>:( [ a)u

i=k

and for m sufficiently large, by Theorem 2.3, (IT/" ' A4,) is regulating;
hence, by Theorem 2.4,

STUAY L <SS (LA (3.6

Combining (3.5) with (3.6) we conclude that for &k large enough

(LAY "< SST ") <S (LAY n<e—1,
In particular, there exists a A* = A such that
(LA "< S " <=1, kzk*=n (37)

However, f(x) can be represented as f(x)=3"_ b q,( x), where, by
Corollary 2.1 and the construction of {g,(x)}!_,. [¢,}" "(1,,4.) for k=0

are eigenvectors of an oscillation matrix corresponding to the jth eigen-
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value. Thus the assumption 5, =0 for /'<f leads in view of Theorem 2.5 1o
the inequalities r< S ([f]” (1)) (LAY Tt for m=h+koC
k =0, which clearly contradicts (3. 7)

From this point our analysis depends on the values of 4, /,.... 4, in
(3.1) and (3.2). We consider the two cases:

(1) 14,1 # 1 for all 1 <j<pu Namely, there exists 0 <m, < u such

that
N B T I I D ST D {3.8)
(I1) There exists a unique j,, 1 <j,<p, such that |, | =1. In this
case we have
[ > o> al=1> 14 ] > - >]4,[>0. (3.9)

We now proceed to show that in case (1) the only bounded function
in S}, i1s the zero function, while in case (II) there exists (up to a
multiplicative constant) a4 unique bounded function in S7

RSO

THEOREM 3.2.  [If case (3.8) holds then dim{S?

noEo

~NL (R))=0.
Proof. Assume that 0% f(x}eS?, , is bounded on R. Then it follows

FINN)

from (3.1), (3.2), and (3.8) that f(x) has the two representations

iy

flo=3 apixr= 3 by (3.10)

jool joemm o1

in contradiction to Lemma 3.1.

THEOREM 3.3, [If case (3.9) holds then dim(S?, ;~L*(R))=

Proof. Since dim S? = u. there exists a non-zero function f common
to the two subspaces of S”, 5. span{p(x),. ,pm( ‘)} and span{q,(x). ..
g,.(x)}. In view of (3.1), (3.2). and (3.9), /€ S? L7 (R) and any such f

has the two representations

)lrr)

S

Sx)= 3 a;pix Z bigx (3.11)

i=1 i= g

These representations are consistent with Lemma 3.1 if and only if

a, #0, h,#0 (3.12)

Jv "

Hence if f, geS* ,AnL*(R) and are linearly independent then it is

possible to choose x, B (2?+ f”>0) such that in the representation of
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af + pe In terms of the basis |p,} the coefficient of p, vanishes in
contradiction to {3.12). This completes the proof of the thcorem

CoroLLARY 34. If fe S}, | {R) then there exist «#0, b #0 such
that

LX) —ap, (X)) = ()H/m ) as X - — % (3.13)
LX) = by () =04, (") as N L. (3.14)

Corollary 3.4 is the generalization to the almost cardinal case of the
periodicity of f€ S}, ,nL"(R) in the cardinal case [5].

4. EX1STENCE OF A SOLUTION 10 THE ACIP

Since the unicity of the solution to our interpolation problem is com-
pletely determined by the dimension of the null-space S}, ., we are
motivated by Theorems 3.2 and 3.3 to seck a solution only tn case (1) when
uniqueness is guaranteed. Sufficient conditions where case (1) holds can be
found in [4].

ProrosimioNn 4.1, In cuse (1), with mi, as in (38), the functions
PN e P X b (X ) g AX) constitute a basis of S,

o ot

Proof. The functions in each of the two sets |p,(x)}/, and

tq,(x)}7. . . are clearly linearly independent and since their total number
is 1 we have only to show that the intersection of the spaces they span is
the zero function. This follows divectly from Theorem 3.2 since every
function in the intersection is bounded on R.

THEOREM 4.2, In case (1) there exist functions ¥, (X)e S satisfying

o3
NG+ =0, 00, for jhkeZ and 0<i, s <r. (4.1}

Moreorer there exist ¢, and y positive constants such that
[ () Sepe (4.2)

Proof. The existence of functions in S, , ; that satisfy (4.1) but are not

necessarily bounded is obvious. We choose a function ¢, ,{(x *gf(\.
S, s that satisfies (4.1). The function g{x) when restricted to {— =, 1, l)
can be looked upon as an element of the space S, (restricted to

‘

— L. 1, ). Thus g(x) can be represented on this interval as

niy 1

gx)=3 apixi+ Y aq,(x) X<, . (4.3)

AER iy e 1
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In the same fashion, restricting g(x) and S 1o (1., ,. %), g(x) can be
represented as

B I
glxy= Z b, p,{x)+ Z hoy (X N2t (4.4)
!

Jooy il

The function ¥, ,{(x). defined as

i Iz \

,‘i_,‘('\'):g(““( Z u/q,(.\')+z h,p,(.\‘]‘).
; /

R T 7
satisfies (4.1) and in view of (4.3} and (4.4) has the representations

Lo Ax)=3Y {a;—b,) p,ix), NSl
i1
Ig
= Y b —da)g,(x). XZt .
7ot L
Thus by (3.8) and the asymptotic behavior of {p,(v)} and [¢,(x)§ as
stated in (3.1) and (3.2), we conclude that %, ,(x) has properties (4.1} and
(4.2) as desired.

The functions ¥ ,(x) are called the Lagrange functions of S7, .
Property (4.2) of the functions % ;(x) i1s not sufficient to prove that series
of the type Y, , 7 | /)% ,(x) converge to the interpolating function
except for the case of cardinal interpolation, where the ¥, ;{x) are trans-
lates of ¥4, .(x). We have to strengthen (4.2) and show that ¢, < ¢ for all
kel

LEMMA 4.3, Let k<[ The functions ¥, (X}, whose existence was proven
in Theorem 4.2, have the representation

iy

e ANy = () = 3 a,p, (X0, (4.51
je
where
[Gedx)i<ce % for x<u, (4.6
and
lag | <cpt for some  fi>1. (4.7

Furthermore for x =1, , . 4 (x) has the representation

I

A5y = Y b, g x). (4

7omp s |
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where
by A< ept for some > 1. (4.9)

Proof. Let S%* be the cardinal spline space whose elements are in

nor.

S7 s for all x<1t,, and define g, ,(x} to be the functions in S}, ; that

oo oo
satisfy (4.1) and agree with the Lagrange functions of S*  for all x <1,
Due to the fact that the Lagrange functions of $* . are translates of the
functions | %, ,(x)}’_,, and these decay exponentially by Theorem 4.2, we
have (4.6).

As seen in the proof of Theorem 4.2 for x=v¢,,,, g, ;(x) can be repre-
sented as

S )= ap 0+ Y b gL (4.10)
I

Jom g 4

Examining g, ;(x) on [7, .t,] and taking A - — =, we see from (4.6)
that Max, ., .1 lg (V) <cept for some f>1 and since |p. .. p,,.
Gy o 1+ 4, is @ basis for S7 - we conclude that

N

lag | < Cp and by il < Cp* (4.11)

for the appropriate j's and i's.

As scen in Theorem 4.2 in order to obtain ¥, ;(v) from g, ,{x) we sub-
tract a suitable element of 7 . In our casc g, (.} already has the desired
exponential decay as x — — x, thus defining ¥, , as in (4.5) we conclude
from {4.11) the estimate (4.7). Moreover (4.8) and (4.9) follow from (4.5),
(4.10), and (4.11). |

We are now in a position to prove that:

THEOREM 4.4, There exist positive constants ¢ and 3 (independent of k)
such that the Lagrange functions ¢ ,(X) satisfy

| ) <ee 8L (4.12)

Proof.  We prove this only for k < /. For k > h the proof is similar, while
the functions % ,(x) for /<A </i are finite in number, satisfy (4.2), and
thus do not affect this result. The proof of (4.12) for k </ 1s done by
estimating ¥ ;(x) on different intervals.

(IN For x=1t,, % (x) satisfy (4.12).

We use (4.8), and show that every term in the sum satisfies (4.12). For
o+ 1 <7<, {g;(x); decay exponentially as x— x, thus for v=1,.
lg,(x)| <ce . Moreover |b, | <cp* for some f> 1. Thus |b, ;,q,(x) <
frese < e Y But vt and thus (x—(,)=|x—1,] and (4.1)
follows.
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(I1)  For v<1t,. ¥ (x) satisfies (4.12).

For this range we use the representation (4.5) and the estimate (4.6).
Since g, ,(x) satisfies (4.6) in this interval it remains to estimate every term
in the sum ¥ a, ., p(x). For 1 <j<m,. | p,(x)} decay exponentially
as x— — . and by (47) the «,,, decay as k- -z Thus
g )| < Ce 1Y W for similar constants which clearly implies (4.12).

(H1) For xe(r,.1,). ¥ (v) satisfiecs (4.12).

The segment 7, < x <1, is finite and ¢, . . .. ¢, arc bounded there. Thus
by (4.8) and (4.11)

|2 < Apt (4.13)
for an appropriate constant A. This leads to (4.12).
THEOREM 4.5.  Suppose (3.8) holds. Then for every r bounded sequences

CfUm L0 i<r— 1L there exists a unique bounded function f(x)e S
such that {1, + 2, =1 for ull ke 7 and O < j<r 1,

ooy

Proof.  Let ¥ ,{x} be the Lagrange functions of Theorem 4.4. Then the
formal series

by

1
FN ) (4.14)
4]

S

clearly interpolates the data { /') ke Z. 0<j<r -1,

It is clementary to see that (4.14) converges uniformly on compact sub-
sets of R. Since (4.14) 1s in cvery segment [1,, 1, , (] a series of polynomials
of degree at most #, it converges to an element of S Finally due to the

Horot

boundedness of { /1" and to property (4.12) of .%, ,(x) we conclude that
(4.14) represents a bounded element of S7 ..
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